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Abstract. We analyse the Schrödinger wave equation of a two-level or spinorial Hamiltonian,
from a classical point of view. An iterative scheme, the coupled mode semiclassical formalism,
is proposed, allowing us to deal with the nonadiabatic transfer. As the WKB expansion, it
allows the one-dimensional Schrödinger equation to be integrated by successive quadratures.

Finally, we show that time-dependent information can be drawn from the previous, purely
stationary, analysis by extending the notion of group velocity. The proposed formalism is thus
coherent with an image of multiple trajectories, conforming more to physical behaviour than a
single trajectory.

1. Introduction

The aim of the present paper is to derive a semiclassical formalism for a spinorial
Hamiltonian. Our primary interest for such a study is vibrational quantum chaos
generated by nonadiabatic couplings between electronic energy levels in molecules. Recent
spectroscopic studies [1] of the NO2 molecule, through statistical analysis of the energy
spectra, clearly exhibit transition to chaos in the vicinity of the conical intersection of their
two first-electronic energy levels, that is, where nonadiabatic couplings are highest. The so-
called quantum chaos, based on random matrix theory [2] and statistical analysis, has been
related to classical chaos [3], even though contrasting examples have been exhibited [4].
For mixed phase space classical Hamiltonians, research is still in progress. In the case of
two-level systems, the situation is worse as none of the previous results can be applied. Our
aim is then to obtain a classical limit of Hamiltonians of such systems, modelling molecules
in coupled electronic states. Within classical mechanics, chaos, by means of standard tools,
can then be studied. The scope of the following theoretical analysis has been restricted:
only one-dimensional two-level Hamiltonians in the case of an avoided crossing will be
considered. Results of comparative studies of classical and quantum chaos will be given
elsewhere.

The classical limit of two-level or more generally, spinorial Hamiltonians has a long
history and is still a subject of current research. It begins with the well known Landau–
Zener (LZ) formula [5] for the two-level case. Zener, through a strongly intuitive approach,
considered that in the classical regime, the time-dependent wavefunction is a single two-
component wavepacket with a prescribed motion. In the vicinity of the avoided crossing
of the adiabatic potentials, diabatic potentials are linearly approximated and the diabatic
coupling is taken as constant. A set of coupled first-order time-dependent differential
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equations for the probability amplitude of each level, is then laid down thanks to physical
arguments. Its asymptotic study gives the probability transfer as a function of the speed of
the wavepacket and other relevant physical parameters. Subsequent analysis of Stückelberg
leads to the same formula but is founded on more rigorous bases. This author considers the
stationary adiabatic wavefunctions far from the avoided crossing point and connects them
through the complex plane similar to how usual WKB wavefunctions are related through
a turning point. This method has been analysed in detail by Thorsonet al [6] for general
potentials. They pointed out that severe restrictive conditions should be satisfied in order
to rigorously derive the LZ formula. Moreover, the full 2× 2 scattering matrix entails an
undetermined phase on the off-diagonal elements. Despite that, it works surprisingly well
when compared with exact numerical computation. Child [7] considers the problem in the
restrictive frame of linear diabatic potentials coupled by a constant, for energies far from
the crossing point. He derived a full expression for the scattering matrix.

The appealing approach, initiated by Zener, of the classical limit through a single
wavepacket moving on two electronic surfaces has since been generalized to several degrees
of freedom and several surfaces. The derived formalism is usually named classical trajectory
approximation [8, 9]. An improved version of it, known as mean trajectory approximation
or hemiquantal treatment, has been proposed [10] where feedback between probability
amplitudes and motion of the wavepacket is taken into account. A formalism of that type
(called ‘one centre approximation’), was used by us to study diffusive chaos in two-level
systems [11]. For more complete references and other proposed formalisms see [12]. The
validity of trajectory approaches was carefully analysed in the two-level one-dimensional
case [13]. It was shown, from an analysis of the stationary Schrödinger equation, that
such an image can be applied to experimental results provided that the condition of ‘±
separation’ is fulfilled, that is, the difference between the momenta corresponding to the
two adiabatic levels has to be small compared with their sum. Therefore, such approaches
are not satisfying, particularly when one deals with well separated adiabatic potentials out
of the avoided crossing points at low energy. In that case, the ‘± separation’ condition is
not satisfied, the components of the wavepacket move at different speeds and a classical
trajectory approximation cannot be valid. Moreover, the encounter of the avoided crossing
point by a wavepacket causes its splitting. In the vibrational case, successive splittings are
expected as time evolves.

Even if a single-trajectory formalism cannot give the right description of the behaviour
of a wavepacket in several coupled potentials, it does not mean, however, that the usual
classical condition, that is, small de Broglie wavelength with respect to the typical length of
the potentials, is not satisfied. From this remark, we try to derive a semiclassical stationary
wavefunction of a two-level Hamiltonian in the spirit of the WKB expansion [14] in the
coupled as well as in the uncoupled region on the potentials. We would qualify such an
approach as ‘weak’ because no assumptions are made on the solution of the problem, in
contrast to the ‘strong’ approach of a single trajectory formalism, where a restrictive frame
is imposed to derive the classical limit.

Other semiclassical theories of spinorial systems, not based on single trajectory, have
been proposed. The use of Wigner transform [11] and the limit ¯h going to zero, leads to the
adiabatic approximation. It is not satisfying, as nonadiabatic couplings are lost. Littlejohn
[15] and others [16] use a preliminary diagonalization of the spinorial Hamiltonian operator
in the space of position/momentum operators, then transform the eigenvalues in their Weyl
symbol and expand in ¯h. It leads to the adiabatic approximation but we take into account
Berry’s phase around a singularity such as a conical intersection. A subsequent work
is based on the use of normal forms [17] in the vicinity of a one-dimensional avoided
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crossing. Zhuet al [18] considered the problem in the same frame as Child did. By means
of analysis in the complex plane using the Stokes phenomenon, they derived the elements
of the scattering matrix as a converging series. Let us also cite the work of Voroninet al
[19] addressing semiclassical quantization of Jahn–Teller molecules. Their results are valid
under a condition similar to the ‘± separation’.

Let us explain how this paper is divided. In the following section 2, we first pose our
frame of study. The results of the usual semiclassical method, by means of an expansion,
are reviewed when applied to Hamiltonian (1), focusing on probability transfer. Section 3
occupies a central place in this paper: a new semiclassical iterative scheme is derived,
applying to spinorial one-dimensional Hamiltonians as well as ordinary ones. Comparison
between approximate and exact wavefunctions shows that this scheme is successful when
nonadiabatic transitions occur. Three applications are then developed in section 4: reflection
of a wavepacket over a potential barrier for a scalar Hamiltonian, comparison with the
LZ formula and derivation of generalized group velocities. This last application, the
most important, allows us to recover time-dependent information from a time-independent
study and shows that our analysis, unlike previous ones, is consistent with the splitting of
wavepackets at the encounter with the crossing point.

2. Semiclassical approximation and probability transfer

2.1. The model

The starting point for our semiclassical study of vibrational behaviour of two-level systems
is the following nuclear Hamiltonian obtained by projection in the so-calleddiabatic basis
[20]:

ĤD =
(
P̂ 2/2m 0

0 P̂ 2/2m

)
+
(
V1(X̂) V

V V2(X̂)

)
. (1)

We restrict our study to one particle of reduced massm in the one-dimensional diabatic
potentialsV1 andV2. X̂ and P̂ are the usual position and momentum operators.V is the
diabatic coupling potential term, taken as real and constant in order to simplify calculations.
Extension to the general case is straightforward as explained in the conclusion.

The usual projection basis is theadiabaticone, made of the electronic states obtained as
eigenvectors of the electronic part of the exact molecular Hamiltonian. By means of these
states, a nuclear Hamiltonian can be derived. Couplings between amplitudes of different
levels is then essentially of a kinetic nature. Thus, this method is the natural way to go
to the Born–Oppenheimer approximation that consists of neglecting these couplings. It is
physically based on the difference of speed between electrons and nuclei owing to the high
ratio of their masses. Our aim being to take into account such couplings, thediabatic
basis is then a more convenient starting point as the couplings are described by position-
dependent terms, abusively called potential. Such a basis is obtained either by a proper
rotation of the adiabatic basis or in the frame of the so-called crude-adiabatic approximation
[21]. In any case, it is possible, at least approximately, to recover the expression of the
Hamiltonian in the adiabatic basis by means of the rotation diagonalizing the potential part
of Hamiltonian (1). The resulting matrix of space-dependent eigenvectors does not commute
with the kinetic part ofĤD and gives rise to kinetic couplings as well as potential couplings.
From Hamiltonian (1), this procedure leads to the following Hamiltonian:

ĤA =
(
P̂ 2/2m 0

0 P̂ 2/2m

)
+
(
U1(X̂) 0

0 U2(X̂)

)
+K(X̂)

(
0 −P̂
P̂ 0

)
(2)
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where

U1,2 = V1+ V2±
√
(V1− V2)2+ 4V 2

2
(3)

K = ih̄

m

V

(U1− U2)2

d(V1− V2)

dX̂
. (4)

Potential terms arising in this change of basis have been omitted, they are not essential
to our discussion. In practice, they are often neglected.ĤA does have the form of the
molecular Hamiltonian projected in the adiabatic basis, restricted to two levels.

In the adiabatic or Born–Oppenheimer approximation, only diagonal terms are retained.
It allows us to deal with two uncoupled adiabatic Hamiltonians:

Ĥ1,2 = P̂ 2

2m
+ U1,2(X̂). (5)

U1 andU2 are recognized as the usual electronic surfaces, that is, the potentials of interaction
of the nuclei in each level respectively. From (2) and (4), it is easy to realize that such
an approximation is valid for low lying states (〈P̂ 〉 small) and in the case of sufficient
separation of the electronic surfaces (U1 − U2 large). Throughout the paper, the adiabatic
approximation (5) will be referred to, hence this brief summary.

The situations we will deal with, do not reduce to this approximation, at least not on the
whole range of space of interest. The breakdown of such an approximation is encountered
in practice at crossing points of the adiabatic potentials (V1 = V2) whereK of (2) reaches
its maximum value: ih̄

m
1

4V
d(V1−V2)

dX̂
. Around such a point, for a sufficient energy, the

two components of the adiabatic nuclear wavefunction are appreciably coupled; therefore,
transfer of probabilitybetween them is expected to occur. That quantity, depending on the
energy of the incident wave and the parameters of the potentials, is the most important in
qualitatively understanding the behaviour of the system. If it is equal to zero, it simply
means that the adiabatic approximation is valid. Far from the crossing point, the adiabatic
as well as the diabatic potentials separate, decreasing the value ofK, thus, making the
adiabatic approximation valid locally. Such a generic situation of coexistence of adiabatic
and coupling regimes is illustrated in figure 1. Diabatic and adiabatic potentials, in reduced
units h̄ = m = 1, are plotted as a function of space for two values of the couplingV . At
the crossing point ofV1 and V2, U1 andU2 avoid crossing, hence the wording ‘avoided
crossing’ also used to name, from the adiabatic point of view, the interval where probability
transfer occurs. Note that in the particular case of figure 1, the adiabatic regime is forced for
large‖x‖—that is roughly outside the interval represented in figure 1—since the potentials
there are flat†, which involves, from (4), thatK = 0.

2.2. The usual WKB expansion

Let us write the time-independent Schrödinger equation from Hamiltonian (1) in the space
representation:− h̄

2

2m

d2

dx2
+ V1(x) V

V − h̄
2

2m

d2

dx2
+ V2(x)

( α(x)
β(x)

)
= E

(
α(x)

β(x)

)
(6)

† The potentials were taken, respectively, as the functionsV1 = −10 tanh((x+16)/10)−4 andV2 = −8e−(x/20)2.
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Figure 1. Potentials used for the study of quantal and semiclassical wavefunctions in two-level
systems in reduced units: ¯h = m = 1. The full curves are the diabatic potentialsV1 andV2.
The scattered curves are the adiabatic potentialsU1 andU2 in the case of diabatic couplingV
equal to 3 (N) or 1.5 (�).

satisfied by a spinorial wavefunction
(
α

β

)
. The most direct way to get a semiclassical

approximation would be to substitute the following ansatz for the wavefunctions in (6):

α(x) = A(x)eiS(x)/h̄ and β(x) = a(x)eiσ(x)/h̄ (7)

whereA, a, S, σ are real quantities. Straightforward replacing of expression (7) in (6) does
not work because phase terms, i.e. ei(S−σ)/h̄ remain in the equations. We will eliminate one
component, sayβ, from (6). One obtains:

− h̄4

4m2

d4

dx4
α(x)− h̄2

2m
(2E − V1(x)− V2(x))

d2

dx2
α(x)+ h̄

2

m
V ′1(x)

d

dx
α(x)

+
[
h̄2

2m
V ′′1 (x)+ V 2− (E − V1(x))(E − V2(x))

]
α(x) = 0. (8)

The prime (′) denotes derivation with respect to space. Substitution of the ansatz form (7)
of α is made into (8) as well as separation into real and imaginary parts. In contrast to
the usual case of the second-order Schrödinger equation, the fourth-order derivative gives
rise to mixed terms of amplitude and phase, and introduces phase terms with derivatives of
order higher than one. In order to get an Hamilton–Jacobi-like equation, i.e. a first-order
equation forS uncoupled fromA, it would be necessary to discard these extra terms. This
requires many conditions to be fulfilled and, finally, quite uselessly complicates the way to
proceed further.

Giving up this approach, we resort to an expansion method to get a semiclassical
approximation. The usual ordering parameter is ¯h [14, 22], but, as quoted in [23], in the
spinorial case, ¯h is not a well suited parameter. We then proceed using the method stated
by Littlejohn [17], a systematic way of making a semiclassical expansion in the sense that
no a priori parameter is required. It consists of introducing an extraε ordering parameter
in the ansatz of the semiclassical wavefunction as:

α = eiS/ε and S = S0+ εS1+ ε2S2+ · · · (9)

as well as in the wave equation, here (8), through the substitution:

d

dx
−→ ε

d

dx
.
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Once we obtain a (truncated) expression ofS, ε is restored to unity.
In our case, straightforward calculations show thatS0 satisfies the following Hamilton–

Jacobi equation:

J4(x, p) = −p
4

4
+ 2E − V1(x)− V2(x)

2
p2+ iV ′1(x)p +

V ′′1 (x)
2

+V 2− (E − V1(x))(E − V2(x)) = 0 (10)

with p = S ′0, and where we have used ‘atomic’ units (¯h = m = 1). The variablep
will be called momentum by analogy to the usual case.J4 is thus a complex Hamilton–
Jacobi function. The first orderS1 in the expansion satisfies the following equation, written
conveniently as a function ofJ4:

1

2i

∂2J4

∂p2
(x, S ′0)S

′′
0 +

∂J4

∂p
(x, S ′0)S

′
1 = 0. (11)

We restrict the expansion to that order. Writingv = ∂J4/∂p, the resolution of (10), (11)
leads to the expression of the semiclassical wavefunction:

α(x) = exp

(
i
∫ x

p dξ −
∫ x

(
∂v

∂p

)
p′

2v
dξ

)
. (12)

p(x) is a root of the polynomial (10) which has one purely imaginary coefficient, it is thus
complex valued. It can be conveniently calculated by integration of the complex equation:

dp

dx
= −∂J4/∂x

∂J4/∂p
(13)

obtained by differentiating (10), which allows us to ‘follow’ continuously a particular root
as a function of the varying parameterx.

Figure 2 displays the comparison between the exact wavefunction and its corresponding
semiclassical approximation given by (12) by means of potentials of figure 1. The following
observations are made in general: for a given value of the energyE and a sufficiently
strong diabatic couplingV , the semiclassical wavefunction achieves to fit accurately the
exact one on the whole integration domain. It can be observed for example with the
following values:E = 15 andV = 3 (result not represented). However, asV decreases
with fixed E: figure 2(a) whereE = 15 andV = 1.5, or E increases with fixedV :
figure 2(b) whereE = 60 andV = 3, discrepancies occur between these two functions.
These discrepancies begin in the vicinity of the crossing point and remain as integration
progresses intox > 0. Corresponding studies of the exact wavefunctions in the adiabatic
basis have also been done. As may generally be noted, the semiclassical approximation fails
when the probability transfer is not weak. As explained in the introduction, this transfer
is the main object of our semiclassical study, thus this new semiclassical scheme does not
allow us to treat semiclassically nonadiabatic transitions.

Further numerical studies of the accessible phase space given by the Hamilton–Jacobi
equation (10), that is, the roots of this equation as a function of space, leads to the following
observations: when two momenta, i.e. two roots, approach each other more and more at
some position through a decrease in the diabatic couplingV or an increase in the energyE,
the semiclassical wavefunction exhibits increasing difference with the exact wavefunction.
At the same time,V → 0 or E→∞ causes the probability transfer to increase.

This correlation between near degeneracy and failure of the semiclassical approximation
can be explained by considering the condition of validity of the expansion inε:

|εS ′1| � |S ′0|. (14)
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(a)

(b)

Figure 2. The exact wavefunction (full curve) is compared with the WKB or the semiclassical
mode wavefunction (◦ ) and the coupled mode wavefunction (• ), in the potential of figure 1.
In the cases illustrated here, the parametersE andV are chosen such that nonadiabatic transfer
occurs. (a) E = 15 andV = 1.5, (b) E = 60 andV = 3. The WKB or semiclassical mode
wavefunction fails in these cases to approximate the exact wavefunction. The coupled mode
semiclassical wavefunction is an accurate approximation of the exact wavefunction over the full
range of integration (only part of it is represented). Before the crossing point, it reduces to the
single-mode or WKB approximation.

Introducing thex-dependent roots of the Hamilton–Jacobi equation (10),p1, . . . , p4 and
assumingp = pi , S ′1 can be rewritten as [24]:

S ′1 = i
∑
j 6=i

1

pi − pj
dpi
dx
. (15)

Thus, we readily realize that near degeneracy makesS ′1 diverging whereasS ′0 remains
constant, thus breaking condition (14).

The conclusion that can be made so far is that near degeneracy of the momenta given
by (10) is correlated to the failure of the semiclassical approximation and to the occurrence
of probability transfer. It leads us to give up the attempt to describe probability transfer by
means of a WKB expansion.
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3. New semiclassical expansion and probability transfer

3.1. Coupled-mode semiclassical expansion

Let us focus on two-level wave equation (8) and rewrite it first under the general following
form: (

d4

dx4
− ia1(x)

d3

dx3
− a2(x)

d2

dx2
+ ia3(x)

d

dx
+ a4(x)

)
α(x) = 0. (16)

As (8) is a real coefficient differential equation,a1 and a3 are imaginary coefficients. Its
associated Hamilton–Jacobi equation is:

J4(x, p) = p4− a1(x)p
3+ a2(x)p

2− a3(x)p + a4(x) = 0. (17)

The aj (x) coefficients appear to be thej th-order sum of the roots of (17). As (16) is
derived from a real Schrödinger equation, (17) is a real coefficient equation with respect to
the variable ip. Then if ip is a solution, its conjugate(ip)∗ is too. In the following, we
assume that:

p3 = −p∗1 p4 = −p∗2 and <(p1) > 0 <(p2) > 0. (18)

In order to develop an alternative semiclassical formalism, let us first study the usual
semiclassical approximation, in the optical domain, for simplicity. The differential of the
optical pathL at the limit of the geometrical optics is:

dL = n ds

where n is the space-dependent refractive index and ds an infinitesimal distance. This
formula tells us that, at the limit of geometrical optics, the wave propagates as ifn

was locally uniform. This can be easily understood from a physical point of view: the
geometrical optics corresponds to the small wavelength limit so thatn varies very slowly
on a length scale of a few wavelengths. Therefore, the wave ‘feels’ the propagative medium
as uniform. In order to make this remark work in a way other than that leading to the WKB
expansion, we then rewrite the wave equation (16) as four first-order coupled equations:

d

dx


α1

α2

α3

α4

 =


0 1 0 0
0 0 1 0
0 0 0 1

−a4(x) −ia3(x) a2(x) ia1(x)



α1

α2

α3

α4

 (19)

whereα1 = α, and treat this system in the same way as if the coefficients of the 4× 4
matrix—referred to asA—were constants.A in then diagonalized, the resulting matrix
is D, the transformation matrix is denotedP . The new coordinates are denotedχk such
that: αj = Pjkχk. Straightforward calculations show thatD and P depend only on the
momenta associated with the Hamilton–Jacobi equation (17) derived from the original wave
equation (16). The transformation matrixP defining the new coordinatesχk is of Van-der-
Monde type built from the ipj :

Djk = ipjδjk Pjk = (ipk)j−1 (20)

whereδjk is Kronecker’s symbol. In particularα is simply the sum of the new coordinates
χj .

The original wave equation (16) is then rewritten as a function of the new coordinates
χj and the four momenta:

d

dx


χ1

χ2

χ3

χ4

 =



ip1 0 0 0
0 ip2 0 0
0 0 ip3 0
0 0 0 ip4

− P−1 dP

dx



χ1

χ2

χ3

χ4

 . (21)
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The matricesP−1 andP−1dP/dx are calculated. By means of the relations betweenpj
and aj , it is possible to express the matrix element by means of the Hamilton–Jacobi
function (17). For the diagonal and off-diagonal terms, notingv = ∂J4/∂p, we get:(

P−1 dP

dx

)
jj

=
(
∂v

∂p

)
j

p′j
2vj

(22)(
P−1 dP

dx

)
jk

= p′j
pj − pk

vj

vk
(23)

wherev = ∂J4/∂p and indexj denotes a substitution ofp by pj in the resulting function
of p.

In the full classical limit case of constant coefficientsaj , theP−1dP/dx term, arising
from noncommutation of the operators d/dx and A, would vanish. We are then led to
interpret it as the quantum part of the wave equation, the smaller the regime is the more
semiclassical it is. If it is neglected:|P−1dP/dx| � pj , the solutions readily obtained:

exp

(
i
∫
pj dξ

)
j = 1, . . . ,4

are the classical wavefunctions (12), restricted to the order zero. Moreover, the expressions
(22) and (23) confirm this point of view sinceP−1dP/dx is globally proportional to the
spatial derivative of the momenta: the slower theaj , then thepj , vary, the smaller thep′j
will be, hence the matrixP−1dP/dx. Writing the wave equation (16) under the form (21)
thus allows us to separate in a way the classical and the nonclassical content of (16).
In the semiclassical regime, we are then led to treat perturbatively the nonclassical term
P−1dP/dx. This treatment associated with the rewriting of the wave equation under the
form (21) is the heart of the alternative semiclassical procedure we propose.

Let us first neglect the off-diagonal terms of the matrixP−1AP = D−P−1dP/dx, thus
retaining elements ofD and terms of (22). It leads to approximate solutions proportional
to the following functions denotedχ0

j :

χ0
j (x) = eiϕj = exp

(
i
∫ x

pj dξ −
∫ x

(
∂v

∂p

)
j

p′j
2vj

dξ

)
j = 1, . . . ,4. (24)

They are readily recognized as the WKB semiclassical expressions of the wavefunctions (12)
up to first order. As they are obtained thanks to a diagonal matrix (off-diagonal terms set
to zero),χ0

j are denoted thesemiclassical modesassociated with the wave equation (16).
The wave componentα is then a linear combination of these modes. The change of
basis by means of the matrixP thus allows one to recast the initial wave equation (16)
under the form (21) where the WKB wavefunctions appear naturally, avoiding resorting
to any expansion whatsoever. The effect of the off-diagonal terms is then to couple the
semiclassical modes. The weak-coupling condition is fulfilled provided that the off-diagonal
terms of the matrixP−1dP/dx can be neglected with respect to the diagonal matrixD. It
requires that:

(i) The momentapj or the coefficients of the wave equation (16) vary slowly (small
derivatives) which corresponds to the usual condition of slow variation of the de Broglie
wavelength in the classical regime. This ensures that dP/dx is small.

(ii) The momenta solutions of (17) must be sufficiently separated in order to avoid
quasi-vanishing denominators in (23).

Note that, when conditions (i) and (ii) are satisfied, the diagonal part ofP−1dP/dx
should also be negligible with respect to the momentapj . Nevertheless, it is not neglected
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in the expression ofχ0
j because the momentumpj , which is mainly real here, gives inχ0

j a
nearly pure phase (imaginary) term whereas(∂v/∂p)jp

′
j /2vj gives essentially an amplitude

(real) term. Hence, whatever the magnitude of the momentum, this term has a noticeable
effect on the wavefunction and is thus retained in the expression (24).

Another condition should be added, concerning the generalized speedvj , which is to
avoid the vicinity of turning points (vj = 0). As our treatment of nonadiabatic coupling is
semiclassical, we assume that no turning points are located in the vicinity of an avoided-
crossing region.

Similar conditions were already noted in writing the convergence condition of the WKB
expansion of the solutions of (8), that is inequality (14) and equation (15). The previous
formalism puts these requirements in a new light, it provides a validation of the WKB
expansion in cases satisfying conditions (i) and (ii).

Historically, approximations (12) or (24) were already derived prior to Wentzel, Kramers
and Brillouin (1926) by Liouville and Green (1837) [25] thanks to a method not equivalent
to an expansion with respect to a small parameter. The method stated before is a new
way of deriving this result that should rather be called Liouville–Green approximation. The
contribution of the first authors concerns the connection formula through a turning point.
However, in order not to change common use, we will give the name WKB approximation
to the semiclassical modes (24).

We return now to the original problem of nonadiabatic transitions. As noted, the WKB
wavefunctions or the semiclassical modes (24) are accurate approximations of the exact
wavefunction in the case where no transfer occurs. Consequently, in the frame of our
formalism, the nonadiabatic transfer will be understood assemiclassical mode conversion.
It means that the semiclassical modes are no longer valid approximations of the exact
wavefunction, the neglected off-diagonal terms (23) shall be taken into account because
condition (ii) is no longer fulfilled. Quasi-degeneracies of the momenta appear which
correspond, as noted, to the breakdown of the semiclassical approximation.

Before computing the wavefunction, let us make a useful simplification of (21). In this
regime, momenta have large absolute values: from property (18), the momentap1 andp2

are well separated fromp3 andp4 respectively. From condition (ii) we can conclude that
no semiclassical mode conversion occurs between the pairs of modes(1, 2) and (3, 4). If
modes 1 and 2 are chosen so that their real part is positive, they represent the progressive
semiclassical waves whereas modes 3 and 4 are the counter-progressive ones. The previous
statement is thus simply the fact that, in the classical regime, no mode conversion occurs
between modes of opposite direction. It allows us to neglect coupling terms ((P−1dP/dx)jk,
j = 1, 2, k = 3, 4) between these modes, that is, to derive two equations coupling two
modes. For modes 1 and 2, (21) is approximated to:

dχ1

dx
=
(

ip1−
(
∂v

∂p

)
1

p′1
2v1

)
χ1− p′2

p1− p2

v2

v1
χ2 (25)

dχ2

dx
=
(

ip2−
(
∂v

∂p

)
2

p′2
2v2

)
χ2− p′1

p2− p1

v1

v2
χ1. (26)

Thus, the first result of the coupled mode formalism is to reduce the initial fourth-order
Schr̈odinger equation (16) to a set of two coupled first-order ones.

The coupling region of the modes corresponds to the vicinity of the crossing point where
condition (ii) is violated. Let us assume that onlyχj , j = 1 or 2, is different from zero
far from the crossing, that isα = χj = χ0

j . We apply an iterative scheme of resolution of
(25) and (26) considering the off-diagonal terms ofP−1dP/dx as perturbing terms of the
semiclassical modej , taken naturally as an initial value of the iteration. It provides the
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coupled modes semiclassical wavefunction. Up to order 2n, it reads:

α(j)(x) = (1+K2(x)+ · · · +K2n(x))χ
0
j (x)+ (K1(x)+ · · · +K2n−1(x))χ

0
k (x) (27)

where

K1(x) =
∫ x

x0

− p′j
pk − pj

vj

vk
ei(ϕj−ϕk) dξ (28)

K2(x) =
∫ x

x0

− p′k
pj − pk

vk

vj
K1ei(ϕk−ϕj ) dξ (29)

...

K2n+1(x) =
∫ x

x0

− p′j
pk − pj

vj

vk
K2ne

i(ϕj−ϕk) dξ (30)

K2n+2(x) =
∫ x

x0

− p′k
pj − pk

vk

vj
K2n+1ei(ϕk−ϕj ) dξ. (31)

x0 is the starting point of integration in an uncoupled region. The index(j) of α is here
to recall that onlyχ0

j is populated atx0, k being the other mode (not to be confused with
indexes in (19)–(24)).

The phenomenon quantified by (28)–(31), will be calledsemiclassical mode conversion
betweenχ0

j (x) and χ0
k (x). K1 is the first-order term of conversion between the initial

mode and the other one. Examination of expressions (28)–(31) clearly shows that this
conversion is appreciable when, first, the usual classical condition is violated, that is, when
rapid variations or low values of the impulsion are encountered (p′1,2 large or phasesϕ1,2

slowly varying) and, second, in the vicinity of a near degeneracy of the impulsions (p1−p2

approaching zero).
As the initial wave equation (6) is under spinorial form, we shall derive the second

componentβ(x) from α(x). By means of the first line of (6), it leads simply to:

β(x) = 1

V

(
1

2m

d2

dx2
α(x)+ (E − V1(x))α(x)

)
. (32)

Rewriting the wave equation under the form (21) makes the calculation of the second-order
derivative easy. In (19),α3 is the second-order derivative ofα, so that from passage matrix
P , we obtain:

α(x)′′ =
4∑

j=1

−p2
j χj . (33)

Hence, the total wavefunction can be derived from theχj with no explicit spatial derivative
calculation which simplifies numerical computations. In the regime where the semiclassical
modes are uncoupled—one mode can be propagated while the others remain with their
amplitude equal to zero—the sum in the previous equation reduces to one term. Then,
thanks to (32), one can define theβ-componentκ0

j corresponding to the modeχ0
j :

κ0
j (x) =

−p2
j (x)/2m+ E − V1(x)

V
χ0
j (x). (34)

Numerical validation of that formalism has been made in the previously studied
situations of section 2.2. In the first of these cases, a low value of the diabatic coupling
V and a low value of the energyE has been chosen, the order of iteration required is 6.
The corresponding result is reported in figure 2(a). The study of the case of largeV and
E is reported in figure 2(b); the same order is required. These numerical computations
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validate then both the approximation leading to the reduced set (25) and (26) and the
accuracy achieved by the iterative scheme. The coupled mode semiclassical formalism thus
allows us to interpret the nonadiabatic coupling at the semiclassical limit where the WKB
approximation fails. It leads to the iterative scheme (28)–(31).

From the beginning, we supposed that the diabatic coupling potentialV was a constant,
in order to simplify expression (8). It is now obvious that this is not a limiting assumption
as far as this parameter is never equal to zero. The elimination of theβ-component
of the wavefunction from (6) can be done, leading to a general fourth-order differential
equation (16), the starting point of the study.

From numerical computations, we conclude that such a coupled mode semiclassical
formalism allows us to deal, in the classical regime, with wave equations whose momenta
are nearly degenerate. It gives a deeper understanding of the semiclassical limit as a broader
class of wave equations are taken into account. The procedure, beginning with the rewriting
of the wave equation under the form (19) and leading to the iterative scheme of (28)–(31),
constitutes a semiclassical expansion fundamentally distinct from the WKB one. It gives
a rather natural derivation of the first-order WKB term and probably explains why, at this
order, the WKB wavefunction is an accurate approximation (under conditions (i) and (ii)),
but subsequently the coupled mode and the WKB expansion are different. Whereas the WKB
expansion is of asymptotic nature and immediately diverges when appreciable probability
transfer occurs, numerical computations show that the coupled semiclassical modes scheme
practically achieves to give the wavefunction very accurately in such a situation. Thus, this
new formalism advantageously replaces the standard WKB expansion. The general study
of the convergence of the iterative expansion will not be carried out here.

4. Applications

Let us now give three applications of this theory: the first one dealing with ordinary (scalar)
Hamiltonians, the following two dealing with two-level Hamiltonians. The first of them
concerns transition probability compared with the LZ formula, the second concerns the
evolution of wavepackets.

4.1. Scalar Hamiltonian

The preceding theory can be successfully used to recover an already known result about
the reflection of a wavepacket above a potential barrier. A wavepacket whose energy is
entirely abovea potential barrier undergoes a partial reflection if its average energy is near
the top of the barrier. From a time-independent point of view, it means that a progressive
wave far away on one side of the barrier is connected to the progressive and counter-
progressive waves on the other side [26]. Such property clearly prevents a WKB expansion
converging to the exact solution as it cannot contain both opposite waves. Classically, the
accessible phase space exhibits a near degeneracy point corresponding to the top of the
barrier. We may apply our previous theory: the point of near degeneracy is regarded as a
semiclassical mode conversion point between the semiclassical modes corresponding to the
progressive and counter-progressive waves far from the barrier. The classical Hamiltonian
or the Hamilton–Jacobi function is chosen as:

H = p2

2m
+ V (x) whereV (x) = 5e−x

2
(35)
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the momenta are then:

p+ = p =
√

2m(E − V (x)) and p− = −p
whereE is the energy. The corresponding time-independent Schrödinger equation is readily
derived from Hamiltonian (35). The procedure of diagonalization of the previous subsection
allows us to rewrite it, with obvious notation for the new coordinates, under the following
form:

d

dx

(
χ+
χ−

)
=
(

ip − p′/2p p′/2p
p′/2p −ip − p′/2p

)(
χ+
χ−

)
. (36)

From the diagonal part of the preceding matrix, the classical modes are readily recognized
as the usual WKB progressive and counter-progressive waves.

As before, settingE = 5.7 near the top of the barrier, we made a numerical comparison
between the exact wavefunction, the WKB wavefunction (12) and the mode coupled
semiclassical wavefunction, retaining only the two first orders, which are displayed in
figure 3. The integration proceeds from negativex (i.e. only mode minus is populated
for x � 0), and this corresponds to a wavepacket coming from positivex and partially
reflected towards positivex and transmitted towards negativex at the encounter with the
barrier. AsE tends towards the top of the barrier, the WKB wavefunction fails to fit the
exact one in thex > 0 region. For values ofE not too close to the top of the barrier, the
second-order wavefunction successfully fits.

More particularly, (28) gives, to first order, the reflection coefficientKr of a single
wave of energyE. Limits of integration are extended to−∞ and+∞ as the integrand
contributes notably only in the vicinity at the top of the barrier. It leads to the formula:

Kr =
∫ +∞
−∞

p′

2p
ei
∫ x
−∞ 2p dx ′ dx. (37)

It is exactly the one found by Bremmer, see references and discussions in [22]. Bremmer’s
original method consists of replacing the potential by a staircase function, solving exactly the
Schr̈odinger equation by applying a connection formula around vertical steps and, finally,
letting the dimension of each stair go to zero. The approach followed here clearly shows the
physical origin of the reflected wave in the impossibility of neglecting the off-diagonal terms

Figure 3. Reflection above the potential barrierV (x) = 5e−x2
with E = 5.7. Symbols as in

figure 2. A change of amplitude and phase is encountered around the top of the barrier (x = 0).
Before this point, all three wavefunctions coincide; after, only the coupled mode wavefunction
achieves to fit the exact one.



3920 M Boiron et al

of the matrixP−1dP/dx in the vicinity of the top of the barrier. The field of application of
the WKB technique is clearly circumvented here. An approach [27] other than Bremmer’s,
consists of writing the wavefunction as anx-dependent linear combination of the WKB
zeroth- and first-order term wavefunctions. It leads to the same iterative scheme as ours.
The recasting of the Schrödinger equation under the form (36) is, we think, a more natural
starting point.

4.2. Transition probability

We consider the adiabatic potentials of figure 4(a) simply made of tangent hyperbolic
functions coupled by a flat potential of value 1.5. Such a choice was made for two
reasons: it allows us to deal with constant slope diabatic potentials around the crossing
point coupled by a constant in order to be in ‘standard’ conditions where the LZ formula
should work. Secondly, in the constant potential regions, both the adiabatic and the single-
mode approximations are valid. The correspondence between these wavefunctions is then
easy, as well as the calculation of asymptotic momenta. In the uncoupled regions, the

(a)

(b)

Figure 4. (a) represents the potentials (diabatic and adiabatic) chosen for the study. The full
curves are the diabatic potentialsV1 andV2. The scattered curves are the adiabatic potentialsU1

andU2, V = 1.5. In (b) are compared four quantities: the exact probability transfer (full curve),
the formula from the coupled mode formalism reduced to the first order (�) and to the third
order (�), and the LZ formula (+). Despite the straight line shape of the diabatic potentials at
the crossing point, the LZ formula fails to predict the nonadiabatic transition probability whereas
the use of the coupled mode formalism succeeds at a small order of iteration.
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diabatic wavefunction is, in general, a linear combination of modes 1 and 2, then(
α

β

)
= A1

(
χ0

1

κ0
1

)
+ A2

(
χ0

2

κ0
2

)
. (38)

If one denotes
(
ᾰ

β̆

)
as the corresponding adiabatic wavefunction, the diabatic adiabatic basis

transformation leads to the relations:

ᾰ = A1
χ0

1

cos(θ/2)
(39)

β̆ = A2
χ0

2

sin(θ/2)
(40)

whereθ is the angle satisfying:

tan(θ) = 2V

V1− V2
.

The calculation is not given in detail, it is based on the fact that in the regions of constant
potentials,χ0

j ∝ eip̆j x wherep̆j satisfiesp̆2
j /2m+ Uj = E. The incoming region is left of

the crossing point (x < 0), only mode 1 is populated here which is equivalent to populating
the surfaceU1. The outgoing region is right of the crossing point (x > 0) where both
surfaces are populated. The nonadiabatic probability transfer is then:

Pr = |β̆(+∞)|
2

|ᾰ(−∞)|2
p̆2(∞)
p̆1(∞) . (41)

The notation±∞ corresponds, respectively, to thex < 0 and thex > 0 asymptotic regions
where the potentials are constant. The difference of momenta between the two surfaces, in
the asymptotic region, induces a difference of flux that is included in the above formula. In
terms of semiclassical modes, it reads, thanks to relations (39) and (40):

Pr = |1+K1(+∞)+K3(+∞)+ · · · |2|χ0
2(+∞)|2

√
E − U2

E − U1
(42)

assuming that mode 1 is populated initially such that|χ0
1(−∞)| = 1. Let us note that

θ(+∞) = π − θ(−∞) which explains whyθ does not appear in the formula. The LZ
formula [5] reads:

Pr = exp

(
− 2πV 2

√
2(E − V )(s1− s2)

)
(43)

whereV is the diabatic coupling,E the energy ands1 ands2 are the slopes of the potentials
at the crossing point (¯h = 1). In Child [7], the square root is simply

√
2E. The numerical

study is made as a function of the energyE, the results are reported in figure 4(b). In that
configuration of potentials, for the range of energy considered, the LZ formula constantly
underestimates the probability transfer by about 0.03. This makes the largest relative error at
low energies. In contrast, the value predicted by the coupled mode formalism reduced to the
first-order termK1 is good, at least at low energies. When the third-order term is included,
we can see the convergence of the iteration scheme. Even when only the first-order term
is taken into account, computation of probabilityP involves non-trivial calculations of the
integrals (28)–(31), even in an approximate way. Let us notice that in the case considered
here (figure 4(a)), the difference of slope of the diabatic potential at the crossing point leads
to a rather localized interaction region so that a small order of iteration is required, the
region contributing to the necessary integrals being restricted to the vicinity of this point.
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4.3. Generalized group velocity

Until now, our semiclassical study of coupled modes was restricted to time-independent
wave equations. We will show in this section how this formalism can be used to derive the
motion of wavepackets in a two-level system. Let us first recall the notion of group velocity
and explain how it can be generalized. In a uniform media or in a constant potential, a
scalar wave has a spacetime dependence equal to exp[i(kx−ωt)]. The relation between the
wave vectork and the pulsationω—resulting from the wave equation—is the dispersion
relationD(k, ω) = 0. The phase velocityvϕ is then simply the ratioω/k. But the velocity
of a wavepacket, of mean wave vectork0, is given by the so-called group velocityvgr :

vgr =
(

dω

dk

)
k=k0

= − ∂D/∂k
∂D/∂ω . (44)

The first equality is obtained thanks to the stationary phase approximation applied to the
wavepacket expression written as a sum of the previously mentioned elementary waves.
The second equality is obtained by a mere differentiation of the dispersion relation. As we
can see, a stationary analysis of a wave equation allows us to derive the law of evolution
of wavepackets. Our aim is then to generalize this notion to any wave equation.

The first extension of the group velocity can be applied to a general wave equation at
the usual (single mode) semiclassical limit. In that regime, the wavefunctions are given by
the WKB form, as shown before, i.e.

A(E, x)exp

(
i

[ ∫ x

p(E, ξ)dξ − Et
])
. (45)

TheA(E, x) amplitude factor, corresponding to the first-order term in the WKB expansion,
is slowly varying on the scale of the spatial phase 1/p if the condition (14) holds.p, E
andx are related through the Hamilton–Jacobi equation. A space-localized wavepacket can
be expressed as a sum over the energy of the elementary waves (45):

ψ(x, t) =
∫
a(E)A(E, x)e(i[

∫ x
0 p(E,ξ) dξ−Et ]) dE. (46)

a(E) is the projection of the wavepacketψ(x, 0) on the wave (45) at timet = 0, ψ(x, 0)
is assumed to be spatially centred around 0 and energetically around a given valueE0.
Under the assumption of a sufficiently localized wavepacket compared with the typical
length of variation ofp—which is of the same order as the typical length of variation
of the potentials—we expandp with respect to space in expression (46) around 0, then
p(E, x) = p(E, 0) + p′(E, 0)x + · · ·. The classical regime hypothesis allows us to make
sense of such an expansion asp′ is assumed to be small. Retaining the zeroth-order term, it
gives a space- and time-localized expression of the wavepacket aroundx = 0 andt = 0 as
a sum of waves of the pattern exp[i(p(E, 0)x−Et)] already studied. Applying the previous
result, we can derive the speedvgr of this wavepacket locally, i.e.

vgr =
(
∂E(p, x)

∂p

)
E=E0

. (47)

The preceding argument can be repeated at each point, hence the expression (47) is the
velocity of the wavepacket everywhere. IfJ is the Hamilton–Jacobi equation connecting
the variablesE,p, x, then a mere differentiation gives:

vgr = −∂J/∂p
∂J/∂E

. (48)
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This expression, compared with equation (44), confirms in a way the fact that the Hamilton–
Jacobi equation is a generalized dispersion relation.

We have here, for simplicity, implicitly assumed that the Hamilton–Jacobi equation
derived in the classical regime was real. The case of a complex equation will be examined
later.

The second extension will concern the coupled mode semiclassical wavefunctions. The
elementary wave is rewritten under the form of the sum of two coupled semiclassical modes:

ψ(x, t) = χ1(E, x)e
−iEt + χ2(E, x)e

−iEt

= %1(E, x)e
i
∫
S ′1(E,ξ) dξ−iEt + %2(E, x)e

i
∫
S ′2(E,ξ) dξ−iEt (49)

where%j and Sj are real. Note that theKn factors are then involved in both of these.
The extension of the previous theory requires that the moduli%j vary slowly on the length
scale of 1/Sj which is not obvious. We shall not discuss this fact from the theory of
coupled mode but simply give arguments from numerical computations. The example
studied uses potentials of figure 4(a) at energyE = 15, mode 1 is the initially populated
mode. Numerically, the derivatives of the phasesS ′j remain of the order of the momenta
pj , that is, a few units. Besides, the maximum variation of the moduli%j with respect to
space is one-tenth, see figure 5(a). The required condition of slow variation of the moduli
is thus fulfilled.

Before calculating group velocities, let us add something about the phases. For the
incoming mode,S ′1 is nearly equal to the corresponding momentump1 all over the space.
In contrast, for the generated mode,S ′2 is first nearly equal top1, then it goes progressively
to p2 as the crossing point is passed. As we can expect, this means that the phase velocities
of the two modes are equal when the second is born, only further the phase velocity of the
generated mode goes to its asymptotic value. The effect of theKn factors on the phase of
χ2 is hence crucial to get this result.

Applying the theory of the preceding paragraph, we can derive two group velocities
corresponding to each mode. They are:

vgr j =
(
∂S ′j (E, x)
∂E

)−1

. (50)

Let us make three remarks. First, in the case of uncoupled semiclassical modes with a
real Hamilton–Jacobi equation, the preceding formula (50) reduces to the already derived
one (47). Second, up to the first generalization, real Hamilton–Jacobi equations hence
real momenta have been considered. In the case that they are complex, the semiclassical
wavefunction shall be written under the previous form (49) and equation (50) shall be
applied. Third, this theory is quite rudimentary as no corrections coming from the amplitude
of the elementary waves was taken into account. Nevertheless, it gives physically coherent
results as we shall see.

The expected overall result of these successive generalizations of the notion of group
velocity is to derive atwo-wavepackettheory as announced in the introduction, demanded
for physical reasons. The derivatives of the phasesS ′j are easily calculated thanks to the
relation:

dχj/dx

χj
= %′j
%j
+ iS ′j

and (25), (26). The derivative with respect to energy has to be done numerically. We
assume only mode 1 populated in the incoming region (x < 0), the group velocity for mode
2 is calculated where its amplitude is sufficient (|χ2| > 5× 10−3). The result is reported
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(a)

(b)

Figure 5. (a) is a plot of the amplitudes of the modes 1 and 2 as a function of space in order
to show that they vary smoothly on the scale of 1/pj . In (b), the full curves are the adiabatic
momenta associated with the adiabatic potentialsU1 andU2 of figure 4(a). The generalized
group velocities of the two modes are plotted as a function of space: the mode of the initially
populated surface (�) and the generated mode (♦). As expected, the wavepackets, initially
together, separate at the crossing point and eventually are decoupled in the asymptotic adiabatic
region (x > 0).

in figure 5(b) where group velocities are plotted as a function of space. A comparison is
made between the velocities in the adiabatic approximation. As for the phase velocities,
one notes that an equality in region mode 2 is born. In the incoming region, the generated
wavepacket of mode 2 firstfollows the main wave of mode 1. In the vicinity of the crossing
point, these waves separate and, at the end, move independently in the outgoing region with
their asymptotic speeds. The correspondingβ-component is of the same shape asα, since
relation (32) preventsβ from being different from zero whereα is. This does not mean that
the wavepackets are centred around the same point, but it prevents a splitting effect similar
to those occurring between modes. Thus this computation, besides arguments already stated,
confirms the well founded nature of the idea of generalizing group velocity in the case of
coupled modes. It allows us to reach the aim, announced in the introduction, to derive a
semiclassical formalism not reduced to a single wavepacket assumption.

Let us conclude that in the case of bound states, which was the initial motivation of
our study, reflections of wavepackets on the potentials lead to a successive passage on the
crossing point so that several splittings occur. The result of the coupled mode semiclassical
formalism from a time-dependent point of view, is thus amultiple wavepackets theory.
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5. Conclusion

As we have shown, the spinorial or two-level Schrödinger equations can be the object
of a semiclassical treatment. The essential different feature from the ordinary one-level
Schr̈odinger equation is that there are two propagating semiclassical waves, obtained through
the WKB approach. Whereas in the usual (nonspinorial) case, the limitE →∞ separates
the momenta of the propagative and counter-propagative semiclassical waves, it leads, in
our spinorial case, to the near degeneracy of the momenta of same sign, causing the failure
of WKB approximation. The same fact is encountered when the diabatic coupling decreases.
In both of these cases, appreciable probability transfer occurs, which is precisely the central
fact within which we want the semiclassical approximation to work. We show then that
an alternative semiclassical iterative treatment is possible, allowing us to deal with these
limiting cases. It leads to the coupled mode semiclassical formalism and clearly shows
limits of traditional approaches. The well known example of the reflection of a wavepacket
over a potential barrier gives, by analogy, an intuitive idea of what happens in a two-level
system.

Let us stress the fact that the coupled mode formalism is indeed of semiclassical nature
because, as the WKB formalism, it allows us to integrate the Schrödinger equation by
successive quadraturesby the unique means of theclassical momenta. Its advantage is that
it accurately approximates the wavefunction in cases the WKB method does not.

This formalism provides a sort of canonical separation of the wavefunction as a
sum of four, rather often two, functions that can be interpreted physically by means of
their associated wavepackets. The derivation of the corresponding velocities, through an
extension of the group velocity theory, gives a physically coherent result and leads to the
expected splitting of the wavepacket at the encounter with the crossing point.

From the practical point of view of calculating wavefunctions, the coupled mode
formalism would be interesting in a multidimensional space as it would allow us to deal
with ordinary differential equations rather than partial differential equations for which space
dimension is a rapidly limiting factor. However, such a theory cannot be generalized
straightforwardly to two dimensions as the Laplacian operator involved in the Schrödinger
equation cannot be factored into two equal differential operators of first order. Nevertheless,
a way of circumventing this difficulty is currently considered by embedding the position
space in a larger one.

The second problem addressed in this paper is the derivation of dynamical behaviour
of particles in two-level systems. A way to deal with it has been sketched. Improvements
can be made by use of the stationary phase techniques. Unlike the previously mentioned
problem, the case of multidimensional position space is nota priori a difficulty.
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